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Abstract Given the position of some facilities, we study the shape of optimal par-
titions of the customers’ area in a general planar demand region minimizing total
average cost that depends on a set up cost plus some function of the travelling dis-
tances. By taking into account different norms, according to the considered situation
of the location problem, we characterize optimal consumers’ partitions and describe
their geometry. The case of dimensional facilities is also investigated.

Keywords Facility location · Optimal transport · Polyhedral- and �p-norms

1 Introduction

Most research in location analysis focuses on locating facilities to better cover
customers’ demand. This traditional analysis can be seen as a primal approach. Alter-
natively, from a dual point of view, one can approach the location problem from a
different perspective, namely the allocation of customers to given facilities. This is
also an important aspect in the area of location and it is usually done bymeans of some
allocation rules such as most preferred, cheapest or closest. Obviously, the choice of
an allocation rule has an important impact in the final solution since the same set of
facilities may give rise to different solutions.

The problem that we wish to consider in this paper falls within the latter area. We
wish to design “optimal” districting of regions of demand originated from given set of
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facilities and using specific criteria. In our setting districting means to find a partition
of an area into smaller areas with optimal properties with respect to our allocation
rule. See Kalcsics [14] for a recent overview of this subject. Districting problems
are motivated by many different applications: political, territorial sales, school areas,
waste collection, et cetera. Among the many criteria that have been used in the liter-
ature: balancedness, contiguity, compactness, closeness,... we shall restrict ourselves
to closeness. From a pure economical point of view, and assuming that distances are a
proxy for costs, we are interested in most economical or efficient partitions. Therefore,
our approach could be used in some applications but not in some other as for instance
in political districting where some other considerations should be made. Our problem
is related, but different, from themarket area problem [4,17,29].We observe that in the
market area problem one is searching for the simultaneous determination of produc-
tion levels and distribution patterns. However, the distribution patterns do not induce
subdivisions on the space because it is allowedmultisource coverage of demand. In our
setting, this is not possible because the allocation rules assign each potential demand
to a unique facility. This has an impact on the solution since it introduces some source
of discreteness that makes the problem more challenging.

From a pure mathematical perspective, the problem can be stated as: given a set
of facilities in a Borel set Ω ∈ R

2, which represent the demand, find a partition (up
to negligible sets) into subsets such that the overall (average) distance covered from
customers to their assigned facilities is minimized [8,9,26]. This question is related
with the problem of finding the best approximation, by discrete measures, of a density
function on a compact subset of Rn in the sense of the p-Wasserstein distance (see
[5]). This connection has been only partially applied to get actual solutions in the field
of Location Analysis and we will show later how to exploit it. In addition, there is
another body of literature on this subject which is related to the so called Voronoi or
generalized Voronoi diagrams [25]. It is well-known that Voronoi diagrams exhibit
closeness properties with respect to their centers and the considered distance measure.
We will extend this optimality property with respect to average distances and we shall
prove a characterization of optimal shapes for partitions under general cost functions
that are bivariate polynomials of the coordinates of the distances between the facilities
and their assigned customers. The reader should observe that since polynomials are
dense in the set of continuous functions by our approach we are solving (up to any
degree of accuracy) the general partition problem with continuous functions.

The paper is organized as follows: in Sect. 2we recall some optimal transport results
and present the facility location problem; in Sect. 3 we study the optimal partition of
the domain depending on the cost function form and in Sect. 4 we consider the circular
facilities case. Some concluding remarks are drawn in Sect. 5.

2 Optimal transport formulation

2.1 Optimal transport results

We consider a bounded Borel subset of R2, say Ω and P(Ω), P(Ω × Ω) the set
of Borel probability measures on Ω and Ω × Ω respectively. Here L2 stands for the
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2-dimensional Lebesgue measure onR2, and we consider the indicator function 1A(u)

for every Borel set A ∈ Ω defined by 1 if u = (x, y) ∈ A and by 0 if u /∈ A.
For μ ∈ P(Ω) and a Borel map T : Ω → Ω we shall denote by T�μ(B) the

push forward (or image measure) of μ through T , which is defined as T�μ(B) =
μ(T−1(B)), for every Borel subset B of Ω , or equivalently, by the change of variable
formula

∫
Ω

ϕdT�μ =
∫

Ω

ϕ(T (u))dμ(u)

for any bounded Borel function ϕ : Ω → R. A transport map between μ and ν, with
μ, ν ∈ P(Ω), is a Borel map T such that T�μ = ν. Now, let c : Ω ×Ω → [0,+∞] a
Borel cost function, theMonge optimal transport problem [22] for the cost c consists
in finding a transport T between μ and ν that minimizes the total cost, i.e. solution to

inf
T�μ=ν

∫
Ω

c(u, T (u))dμ(u). (M)

The minimizer is called an optimal transport map. The Monge problem is, in general,
difficult to solve and it can be useful to consider the Kantorovich relaxed Monge’s
formulation [15] as

Wc(μ, ν) = inf
γ∈Π(μ,ν)

∫
Ω×Ω

c(u, v)dγ (u, v), (MK)

where Π(μ, ν) denotes the set of all transport plans between μ and ν, i.e. Borel
probabilitymeasures onΩ×Ω havingμ and ν asmarginals, i.e. such that (π1)�γ = μ

and (π2)�γ = ν, where we denote by π1 the projection onto the first component and
by π2 the projection onto the second component. Since Π(μ, ν) is weakly∗ compact
and c is continuous, it is easy to see that the infimum ofWc(μ, ν) is attained at some
γ and such γ is called optimal transport plan for the cost c between μ and ν. If there
exists an optimal γT which is induced by a transport map, i.e. of the form

γT = (id × T )�μ

for some transport map T , then T is an optimal solution of the Monge’s problem.
It turns out that Wc is a distance on P(Ω), called the Wasserstein distance, and it
metrizes the weak convergence of measures. If Ω is a compact set and c is a lower
semicontinuous function on Ω × Ω , the following duality formula holds (Theorem
3.1 in [3]):

Wc(μ, ν) = sup
ϕ(u)+ψ(v)≤c(u,v)

∫
Ω

ϕ(u)dμ(u) +
∫

Ω

ψ(v)dν(v) (2.1)

whereϕ ∈ L1
μ(Ω),ψ ∈ L1

ν(Ω). Herewedenote by L1
μ(Ω) the vector space consisting

of the Borel functions which are μ-integrable.
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206 L. Mallozzi, J. Puerto

Existence and uniqueness results for the optimal transport problem are very difficult
to obtain. Recently the existence of an optimal transport map has been proved under
suitable assumptions, and also its uniqueness with additional requirements (see [1,6,
16,30] and the references in). Recall the following existence theorem (Theorem 2.1
in [1]):

Theorem 2.1 Suppose that c is a lower semicontinuous function on Ω × Ω . Then
there exists γ ∈ P(Ω×Ω) solving (MK).Moreover, if c is continuous and real valued,
provided μ has no atoms, we have

Wc(μ, ν) = inf
T�μ=ν

∫
Ω

c(u, T (u))dμ(u).

Analogously to Proposition 2.4 in [10], we obtain the following results. We use in
the following the notation N = {1, . . . , n} andμ−a.e.u ∈ Ω means for almost every
u ∈ Ω .

Proposition 2.1 Let μ be absolutely continuous with respect to L2 and D : Ω → R

be a nonnegative function such that μ(u) = D(u)du; let p1, . . . , pn in Ω .
(i) Let ν = ∑

i∈N ωiδpi and (Ai )i∈N the partition of Ω such that the map T (u) =∑
i∈N pi1Ai (u) is an optimal transport map fromμ to ν. Let moreover the pair (ϕ, ψ)

be any solution of the dual formulation (2.1). Then, for D − a.e.u ∈ Ω , we have

ϕ(u) = inf
i∈N{c(u, pi ) − ψ(pi )} =

∑
i∈N

(c(u, pi ) − ψ(pi ))1Ai (u). (2.2)

(ii) Let (Ai )i∈N be a partition of Ω and set ωi = ∫
Ai

D(u)du, ν = ∑
i∈N ωiδpi and

T (u) = ∑
i∈N pi1Ai (u). Let moreover ϕ ∈ L1

μ(Ω),ψ ∈ L1
ν(Ω) be two functions

satisfying condition (2.2), then we have that T is optimal for (M) and the pair (ϕ, ψ)

is optimal for the dual formulation (2.1).

Note that (2.2) describes the shape of the set Ai , for every i ∈ N , of the partition:

Ai = {u ∈ Ω : c(u, pi ) − ψ(pi ) < c(u, p j ) − ψ(p j ) ∀ j �= i} (2.3)

It is possible to prove that the optimal transport map from an absolutely continuous
measure to an atomic measure is unique D − a.e. [10].

2.2 The facility location problem

We suppose that in Ω , a Borel, compact subset of R2, customers are distributed
according to a demand density D ∈ L2(Ω) that is an absolutely continuous probability
measure, where D : Ω → R is a nonnegative function with unit integral
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∫
Ω

D(u)du = 1

with u = (x, y) ∈ Ω and du = dxdy, and that n facilities p1, . . . , pn , pi = (xi , yi ) ∈
Ω for any i ∈ N = {1, 2, . . . , n} are located in the set (n ∈ N). Facility pi serves
the consumer demand in the region Ai ⊆ Ω according to a partition of the set Ω ,
i.e. a finite family (Ai )i∈N of pairwise disjoint (up to D-negligible sets) Borel sets
Ai ∈ Ω such that ∪n

i=1Ai = Ω . For any i ∈ N , the density of the sub-region Ai will
be denoted by

ωi =
∫
Ai

D(u)du.

We denote by N the set of the facilities N = {1, 2, . . . , n}, by An the set of all
partitions in n sub-regions of the regionΩ , A = (A1, . . . , An) ∈ An and by S the unit
simplex in R

n defined by S = {
β = (β1, . . . , βn) ∈ R

n : ωi ≥ 0,
∑n

i=1 βi = 1
}
.

Clearly, (ω1, . . . , ωn) ∈ S.
For any i ∈ N , we assume the standard cost structure associated to costumers in

the region Ai ⊆ Ω given by

aiωi +
∫
Ai

Fi (u − pi )
ri D(u)du

where ai ∈ [0,+∞[ is the fixed set up cost of the facility pi and the second term
represents the service costs of customers in Ai given by a general bivariate polynomial
Fi ∈ R[XY ] and ri ∈ Q+. In many cases, as it is usual in location analysis, the
dependence on the pair (u, pi ) is given by a measure of the distance from pi to u,
namely γQ(u− pi )where γQ is theMinkowski functional of Q, a compact, convex set
with the origin in its interior. The reader may observe that the choice of Fi ∈ R[XY ]
ensures that we can handle any continuous cost function since the set of polynomials
is dense in the space of continuous functions. On the other hand, by the dependence
through γQ we cover all the family of polyhedral or block norms [31] and also the �q
norms in R2, i.e.

�q(pi − p j ) = (|xi − x j |q + |yi − y j |q
) 1
q ,

for q ≥ 1 (special cases include the rectilinear or Manhattan metric when q = 1, the
Euclidean metric when q = 2) and if q = +∞ the Tchebycheff metric

�∞(pi − p j ) = max{|xi − x j |, |yi − y j |},

with pi , p j ∈ Ω .
We will consider in the following also the case Fi (�q(u − pi ))ri = αi�q(u − pi )

with ri = 1/q, αi ∈ R, αi > 0 for all i ∈ N . In this case we deal with a weighted �q
metric.
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Given the set of the facilities {p1, . . . , pn}, we are interested in the problem of
finding the optimal partition of the customers minimizing the total cost

f (A) =
n∑

i=1

{∫
Ai

[ai + Fi (u − pi )
ri ]D(u)du

}

and the optimization problem is

min
(A1,...,An)∈An

∑
i∈N

{∫
Ai

[ai + Fi (u − pi )
ri ]D(u)du

}
(P)

This problem has been studied in the case Fi (u − pi )ri = �q(u − pi ) in [2] and in
the case where Fi (u − pi )ri is a continuous function of �2(u − pi ) in [28]. By using
equality (2.1) and Theorem 2.1, if μ(u) = D(u)du and c(u, pi ) = Fi (u − pi )ri , we
have that

inf
(A1,...,An)∈An

∑
i∈N

{∫
Ai

[ai + Fi (u − pi )
ri ]D(u)du,

}

= inf
(ω1,...,ωn)∈S

{
Wc(μ,

n∑
i=1

ωiδpi ) +
n∑

i=1

ωi ai , ωi =
∫
Ai

D(u)du

}
(2.4)

In fact, by Proposition (2.1)

inf
(ω1,...,ωn)∈S

{
Wc(μ,

n∑
i=1

ωiδpi ) +
n∑

i=1

ωi ai , ωi =
∫
Ai

D(u)du

}

= inf
(ω1,...,ωn)∈S

∫
Ω

Fi (u − T (u))ri D(u)du +
n∑

i=1

ωi ai , ωi =
∫
Ai

D(u)du
}

= inf
(ω1,...,ωn)∈S

∑
i∈N

∫
Ai

Fi (u − pi )
ri D(u)du +

n∑
i=1

ωi ai , ωi =
∫
Ai

D(u)du
}

= inf
(A1,...,An)∈An

f (A). (2.5)

Then, summarising and adapting the proof of Lemma 2 in [20], the following
existence theorem holds.

Theorem 2.2 Suppose that Fi is a continuous function for any i ∈ N. Then the
problem (P) admits a solution that verifies

Ai =
{
u ∈ Ω : ai + Fi (u − pi )

ri < a j + Fj (u − p j )
r j ∀ j �= i

}
, (2.6)

where the equalities is intended up to D-negligible sets.
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3 Optimal partitions of the domain

Depending on the choice of the cost function c, the optimal partition of the customers
has some properties that we want to investigate. We suppose in this section that Fi is
a continuous function, so that result (2.2) holds. The case of Fi (t) = t2 and q = 2
has been studied in [19,20]: given the location of the facilities, the optimal partition
is done by means of polygons in the set Ω .

Let us introduce some classes of geometrical objects in the plane. We denote by
ΓP the set of the polygons of the plane.

Definition 3.1 The set of geometrical figures in the plane whose boundary is done by

1. segments and arcs of circles is denoted by ΓO

2. segments and algebraic curves (defined by a polynomial equation in x and y) is
denoted by ΓC

Recall that an algebraic curve is any curve that can be described as the solution of
a set of polynomial equations and a semialgebraic set is the one described by a system
of polynomial inequalities.

We prove in the following theorem the possible configurations of the splitting of
the customers: each service region Ai , i.e. the set of customers that will be served by
facility pi , has a boundary that can be a set of ΓP , ΓO or ΓC depending on the chosen
metric. The resulting partition of the domain is described in the following theorems.

Theorem 3.1 Let us denote by pi = (xi , yi ) the i th facility. Let us consider that the
cost function of problem (P) is given by one of the following cases:

1. Fi (u − pi )ri = (∑
h,k:h+k≤m bhki |x − xi |h |y − yi |k

)ri with ri ∈ Z+ for all i =
1, . . . , n;

2. Fi (u − pi )ri = (
βi + ∑

h,k:h+k≤m bhki |x − xi |h |y − yi |k
)ri with βi ∈ R, ri ∈ Q+

and ai = a for all i = 1, . . . , n;

where we denote u = (x, y). The optimal partition A1, . . . , An solution of the problem
is described by semi-algebraic sets with boundaries in ΓC .

Proof To prove item (2), apply the characterization of optimal partitions given by
Theorem 2.2 to deduce that the set of points that account for the same cost with
respect to facilities i and j is described by:

⎛
⎝βi +

∑
h,k:h+k≤m

bhki |x − xi |h |y − yi |k
⎞
⎠

ri

=
⎛
⎝β j +

∑
h,k:h+k≤m

bhkj |x − x j |h |y − y j |k
⎞
⎠

r j

.

It is clear that after some algebra this equation becomes a polynomial in x, y and
therefore the result follows.

The proof of item (1) is similar. �
We note in passing that the above result includes as particular cases those situations

where the dependence with respect to the vectors u − pi is measured by weighted �q
norms, q ∈ (1,+∞).
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Corollary 3.1 The optimal partition A1, . . . , An solution of the problem (P) is done
by sets in ΓP , i.e. polygons, in the set Ω if:

1. Fi (u − pi ) = αi (|x − xi | + |y − yi |) (Manhattan metric), ri = 1, and αi > 0 for
any i ∈ N;

2. Fi (u− pi ) = (x−xi )2+(y− yi )2 (unweighted squared Euclidean metric), ri = 1
for any i ∈ N;

3. Fi (u − pi ) = αi max{|x − xi |, |y − yi |} (Tchebycheff metric), ri = 1, and αi > 0
for any i ∈ N.

Proof Case 1. The i th facilities is given by pi = (xi , yi ) and we denote u = (x, y);
by using inequality (2.6) we have under assumption 1 that u ∈ Ai if

ai + αi [|x − xi | + |y − yi |] < a j + α j
[|x − x j | + |y − y j |

]
(3.1)

for all j �= i ; the set of the customers indifferent in choosing the facility in pi and the
facility p j is given by u ∈ Ω such that

αi |y − yi | − α j |y − y j | = a j − ai + α j |x − x j | − αi |x − xi | (3.2)

is a segment in Ω , so that the sets Ai are polygons given by the intersections of n − 1
half-planes with the set Ω .

Case 2. This case has been investigated in [19,20]. By using inequality (2.6) we
have under assumption 2 that u ∈ Ai if

ai +
[
|x − xi |2 + |y − yi |2

]
< a j +

[
|x − x j |2 + |y − y j |2

]
(3.3)

for all j �= i , that is equivalent to

y
(
2y j − 2yi

)
< x

(
2xi − 2x j

) +
(
a j − ai + x2j − x2i + y2j − y2i

)
(3.4)

and again the sets Ai are polygons in Ω .
Case 3. By using inequality (2.6) we have under assumption 1 that u ∈ Ai if

ai + αi max {|x − xi |, |y − yi |]} < a j + α j max
{|x − x j |, |y − y j |

}
(3.5)

for all j �= i ; in any of the possible four cases the boundary of the set is a segment, in
two of these cases it is parallel to one coordinate axis. �
Corollary 3.2 The optimal partition A1, . . . , An solution of the problem (P) is done
by sets in ΓO if Fi (u − pi ) = ai + αi ((x − xi )2 + (y − yi )2) (weighted squared
Euclidean metric), ri = 1, and αi > 0 for any i ∈ N.

Proof By using inequality 2.6 we have that u ∈ Ai if

ai + αi

[
|x − xi |2 + |y − yi |2

]
< a j + α j

[
|x − x j |2 + |y − y j |2

]
(3.6)

123



The geometry of optimal partitions in location problems 211

for all j �= i , that is equivalent to

(
αi − α j

)
x2 + (

αi − α j
)
y2 + (

2α j x j − 2αi xi
)
x + (

2α j y j − 2αi yi
)
y + η < 0

(3.7)
being the constant η = ai − a j + αi (x2i + y2i ) − α j (x2j + y2j ); the set is a circle in
the plane and Ai is the intersection of n − 1 circles and Ω . In the case where αi = α j

the boundary between Ai and A j is a segment. Note that if the set Ai is not contained
in Ω , then it must be intersected with Ω and its boundary contains segments of the
boundary of Ω . �

By using a numerical procedure based on a genetic algorithm used in [19], we
compute in the following examples the optimal partition given the facilities location.
In the algorithm, the set Ω is discretized and for any facility i ∈ N the area of the
subregion Ai at step k is

Ak
i = δ

L∑
l=1

M∑
m=1

Hk
i (l,m)

where, by the characterization (2.6),

Hk
i (l,m) =

{
1 if ai + Fi (u(l,m) − pi )ri < a j + Fj (u(l,m) − p j )

r j ∀ j �= i
0 otherwise

}

δ is a constant and u(l,m) the element in the lth row and mth column of the chosen
grid.

The computational complexity of the procedure that we follow is affordable. In each
iteration k we consider a grid with Mk,×Nk points in [0, 1] × [0, 1]. Next, we need
to compute Hk

i at each point in the grid for each facility i = 1, . . . , n. Observe that
this evaluation involves n comparisons (according to the formula above). Therefore,
the overall complexity of each iteration is O(MkNkn2). The number of iterations
depends on the precision required in the final description of the partitions. We have
observed that inmost cases an order of several hundreds of subdivisions per coordinate
axis is enough to have meaningful solutions. The conclusion is that this procedure is
applicable for medium size location problems in the plane. Next, we illustrate some
examples to provide some intuition about the geometry of the optimal partitions. In
all cases, we consider the region Ω = [0, 1] × [0, 1] ⊂ R

2.

Example 3.1 Let us consider a Gaussian distribution

D(u) = exp
(
−16(x − 0.5)2 − 16(y − 0.5)2

)

for any u = (x, y) ∈ [0, 1]2. Four facilities are located in p1 = (0.25, 0.25), p2 =
(0.75, 0.25), p3 = (0.75, 0.75), p4 = (0.25, 0.75) and the fixed costs are a1 = a2 =
a3 = 1, a4 = 1.3. In this case the unweighted squared Euclidean metric is used and
the resulting partition is shown in Fig. 1.
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212 L. Mallozzi, J. Puerto

Fig. 1 Unweighted squared Euclidean metric. Example 3.1

Fig. 2 Weighted squared Euclidean metric. Example 3.2

Example 3.2 Let us consider the uniform density D(u) = 1,∀u ∈ Ω . Three facilities
are located in p1 = (0, 0), p2 = (1, 0), p3 = (1, 1) and the fixed costs are a1 = a2 =
a3 = 0, the weights αi = i, i = 1, 2, 3. In this case the weighted squared Euclidean
metric is used and the results are summarized in Fig. 2.
Here the boundaries of the subset A1, A2, A3 of the partition in the interior ofΩ are arcs
of the circles (x−1)2+(y−3)2 = 6 between A3 and A2, (x−3/2)2+(y−3/2)2 = 3/2
between A1 and A3 and (x − 2)2 + y2 = 2 between A1 and A2.

Example 3.3 Let us consider the uniform density D(u) = 1,∀u ∈ Ω . Three facilities
are located in p1 = (0, 0), p2 = (1, 0), p3 = (1, 1) and the fixed costs are a1 = a2 =
a3 = 0, the weights αi = i, i = 1, 2, 3. In this case the weighted Manhattan metric is
used and the resulting partition is shown in Fig. 3.
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Fig. 3 Weighted Manhattan metric. Example 3.3

Fig. 4 Weighted Tchebycheff metric. Example 3.4

Example 3.4 Let us consider the uniform density D(u) = 1,∀u ∈ Ω . Three facilities
are located in p1 = (0, 0), p2 = (1, 0), p3 = (1, 1) and the fixed costs are a1 = a2 =
a3 = 0, the weights αi = i, i = 1, 2, 3. In this case the weighted Tchebycheff metric
is used. The induced partition is shown in Fig. 4.

Example 3.5 Let us consider the uniform density D(u) = 1,∀u ∈ Ω . Three facilities
are located in p1 = (0, 0), p2 = (1, 0), p3 = (1, 1) and the fixed costs are a1 = a2 =
a3 = 0, the weights αi = i, i = 1, 2, 3. In this case the weighted �5 metric is used
and the numerical results are summarized in Fig. 5.

It is well-known, in the specialized literature of LocationAnalysis, that the choice of
the adequate metric plays an important role in the properties of the final solution. The
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Fig. 5 Weighted �5 metric. Example 3.5

use of �p metrics is based on the properties of the induced normed spaces (including
the Euclidean case). The use of squared Euclidean measurements is related to the
standard theory of errors (sum of squared residuals). Finally, the use of polyhedral or
block norms (which also include the �1 and �∞ norms) are often used to model real
world situations (likemeasuring highway distances) more accurately than the standard
Euclidean norm. In addition, they can also be used to approximate arbitrary norms
since the set of block norms is dense in the set of all norms [18,31].

4 Dimensional facilities

In this section we consider the case where the facilities located in the domain Ω are
circles in the region, as it happens in several concrete situations, for examplewhen they
are parks, cross-docking areas, etc [7,11,12,21,24,27]. We point out that for circular
facilities, we cannot apply the optimal transport theory as done in Sect. 3, because the
characterization (2.6) holds when the measure ν has a discrete support, and this is not
the case. So, we follow a different approach that requires to obtain explicit expression
of the distance from a point of the domain Ω to a circle.

We consider P1, . . . , Pn , where Pi is a circle with center pi = (xi , yi ) and radius
εi with pi ∈ Ω and εi > 0. We assume that any Pi is contained in the interior of Ω

for any i ∈ N and Pi ∩ Pj = ∅ for any i, j ∈ N , i �= j .
For any u ∈ Ω\X and any closed subset X ⊂ Ω , the distance from a point u to a

set X is given by

d(u, X) = min
ξ∈X d(u, ξ).

It is well-known that, for any u /∈ Pi , in the case of Euclidean distance (Fig. 6)

d2(u, Pi ) = �2(u − pi ) − εi ,
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Fig. 6 Circular facilities in Ω

εipi
d2(u, Pi)

Pi

u

Moreover, as shown by Property 1 in [7], this formula holds for every �q -norm. Then
we have

dq(u, Pi ) = �q(u − pi ) − εi .

for every q ≥ 1 and u /∈ Pi ; in our discussion we always suppose that the point u
cannot be taken inside the circle and we extend the formula as

dq(u, Pi ) =
⎧⎨
⎩

�q(u − pi ) − εi if u /∈ Pi

0 if u ∈ Pi .

So that we can formulate the problem in this extensive facilities case.
Given the set of the facilities {P1, . . . , Pn} and their respective set up costs

{a1, . . . , an}, we are interested in finding the optimal partition of the customers mini-
mizing the total cost

f (A) =
n∑

i=1

{∫
Ai

[ai + Gi (dq(u, Pi ))]D(u)du

}

being Gi ∈ R[X ] : [0,+∞[→ [0,+∞[ a real polynomial and the optimization
problem is

min
(A1,...,An)∈Ac

n

∑
i∈N

{∫
Ai

[ai + Gi (dq(u, Pi ))]D(u)du

}
(PCc)

where Ac
n is the set of all possible partitions of the set Ω\{P1 ∪ · · · ∪ Pn}.

We can consider the following relaxed formulation: finding a partition ( Āi )i∈N of
Ω that is an optimal solution of

min
(A1,...,An)∈An

∑
i∈N

{∫
Ai

[ai + Gi (dq(u, Pi ))]D(u)du

}
. (PC)

Let us observe that result (2.2) is satisfied with

Fi (u − pi )
ri = Gi (dq(u, Pi )) =

⎧⎨
⎩
Gi (�q(u − pi ) − εi ) if u /∈ Pi

Gi (0) if u ∈ Pi .
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and for any i ∈ N a solution of (PC) is given by

Āi = {u ∈ Ω : ai + Gi (dq(u, Pi )) < a j + G j (dq(u, Pj )) ∀ j �= i}

Proposition 4.1 Suppose that for any i ∈ N we have ai + Gi (0) < a j + G j (�q(u −
p j ) − ε j ) ∀ j �= i and for any u ∈ Pi . Let ( Āi )i∈N be an optimal partition solution of
the problem (PC). Then the partition

( Āc
i )i∈N = ( Āi\Pi )i∈N

is an optimal solution of the problem (PCc).

Proof For any i ∈ N under the assumptions of non-overlapping circles, we have
Pi ⊆ Āi : if u ∈ Pi since

Āi = {
u ∈ Ω : ai + Gi

(
dq(u, Pi )

)
< a j + G j

(
dq

(
u, Pj

)) ∀ j �= i
}

and dq(u, Pi ) = 0, dq(u, Pj ) = �q(u − p j ) − ε j then u ∈ Āi . Moreover for every
i ∈ N

∫
Āc
i

[
ai + Gi

(
dq (u, Pi )

)]
D(u)du =

∫
Āi

[
ai + Gi

(
dq(u, Pi )

)]
D(u)du.

�
Then the problem reduces to finding the optimal partition with respect to the set of

the centers of the facilities {p1, . . . , pn} and we obtain results similar, to those already
proved for the pointwise facility case, for the shape of the partition.

Remark 4.1 In the case considered in Proposition (4.1) of zero fixed costs ai = 0 and
Gi (t) = t for any i ∈ N , the customers that are indifferent in choosing facility Pi and
facility Pj are located on the so called bisector of the compact convex sets Pi and Pj

[13,23,26].

Theorem 4.1 If Gi (t) = αi t, ∀i ∈ N, αi > 0 and for any i ∈ N we have ai <

a j + α j (dq(u, p j ) − ε j ) ∀ j �= i and for any u ∈ Pi , then the external boundary
of each set Āc

i of the optimal partition Āc
1, . . . , Ā

c
n solution of the problem (PCc) is

conformed by the intersection with Ω\⋃
i∈N Pi of:

1. Polyhedra if q = 1, +∞ or the distance is induced by the Minkowski functional
of a compact, convex polyhedron with zero in its interior (respectively weighted
Manhattan, weighted Tchebycheff of polyhedral metric),

2. Sets with boundaries defined by conics if the distance measure is the weighted
squared Euclidean metric,

3. Semi-algebraic sets if the distance measure is induced by the q-power �q norm,
1 < q < +∞.
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Fig. 7 Weighted Manhattan metric. Example 4.1

Fig. 8 Weighted Euclidean metric. Example 4.2

Proof The set Āc
i is described as

Āc
i = {

u ∈ Ω\ {P1 ∪ · · · ∪ Pn} : ai + αi
(
dq(u, pi ) − εi

)
< a j + α j

(
dq(u, p j ) − ε j

) ∀ j �= i
}

If the i th facilities is given by pi = (xi , yi ), the inequality in the above expression
results depending of the value of q: 1) for q = 1 ai + αi [|x − xi | + |y − yi |] < a j +
α j [|x−x j |+|y−y j |], 2) forq ∈]1,+∞[ is equivalent toai+α

q
i [|x−xi |q+|y−yi |q ] <

a j +α
q
j [|x−x j |q +|y− y j |q ]; and 3) for q = +∞ is ai +αi max{|x−xi |, |y− yi |]} <

a j + α j max{|x − x j |, |y − y j |}. The results follow from the above expressions. �
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Fig. 9 Weighted �6 metric. Example 4.3

Fig. 10 Weighted Tchebycheff metric. Example 4.4

In the following we illustrate the application of the above results with several
examples. In all cases, we consider the region Ω = [0, 1] × [0, 1] ⊂ R

2, the uniform
density D(u) = 1, three circular facilities P1 centered in p1 = (0.25, 0.25) with
radius ε1 = 0.25, P2 centered in p2 = (0.75, 0.25) with radius ε2 = 0.2 and P3
centered in p3 = (0.75, 0.75) with radius ε3 = 0.15, having identical fixed costs
a1 = a2 = a3 = 2.

Example 4.1 We consider the location problem with weighted Manhattan metric with
weights α1 = 8, α2 = 10 and α3 = 13.3. Here all the assumption of theorem (4.1)
are satisfied and numerical results are summarized in Fig. 7.
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Example 4.2 We consider the location problem with weighted Euclidean metric with
weights α1 = 8, α2 = 10 and α3 = 13.3. Here all the assumption of theorem (4.1)
are satisfied and numerical results are summarized in Fig. 8.

Example 4.3 We consider the location problem with weighted �6 metric with weights
α1 = 8, α2 = 10 and α3 = 13.3. Here all the assumption of theorem (4.1) are satisfied
and numerical results are summarized in Fig. 9.

Example 4.4 We consider the location problem with weighted Tchebycheff metric
with weights α1 = 8, α2 = 10 and α3 = 13.3. Here all the assumption of theorem
(4.1) are satisfied and numerical results are summarized in Fig. 10.

5 Conclusion

Optimal districting of regions with respect to a given set of facilities is an interest-
ing dual location problem. We have characterized the shapes of optimal partitions in
the plane with respect to general functions of the average distances. Depending on
the globalizing function different structural properties of the elements in the partition
are derived. In general, for the family of polyhedral (block) norms or �q -norms and
bivariate polynomials we can prove that partitions are defined by semi-algebraic sets.
In some particular important cases polyhedral sets are obtained, as for instance for
polyhedral or the �1-, �2- and �∞-norms. We have also investigated the case of dimen-
sional facilities and for circular shapes we obtain similar results to those mentioned
above. It is an interesting open problem to determine optimal partitions for more
general shapes of the dimensional facilities. Moreover, it is an interesting question
to consider discontinuities in the cost functions and to analyze its implication in the
consumers distribution. This can lead to a market situation where the demand is not
totally satisfied. This problem opens new avenues for future research.
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